skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baboli, Meheran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Non-contact home-based sleep monitoring will bring a paradigm shift to diagnosis and treatment of Obstructive Sleep Apnea (OSA) as it can facilitate easier access to specialized care in order to reach a much boarder set of patients. However, current remote unattended sleep studies are mostly contact sensor based and test results are sometimes falsified by sleep-critical job holders (driver, airline pilots) due to fear of potential job loss. In this work, we investigated identity authentication of patients with OSA symptoms based on extracting respiratory features (peak power spectral density, packing density and linear envelop error) from radar captured paradoxical breathing patterns in a small-scale clinical sleep study integrating three different machine learning classifiers (Support Vector Machine (SVM), K-nearest neighbor (KNN), Random forest). The proposed OSA-based authentication method was tested and validated for five OSA patients with 93.75% accuracy using KNN classifier which outperformed other classifiers. 
    more » « less